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Summary. We consider an optimally managed renewable resource with stochas-
tic non-concave growth function. We characterize the conditions under which the
optimal policy leads to global extinction, global conservation and the existence of a
safe standard of conservation. Our conditions are specified in terms of the economic
and ecological primitives of the model: the biological growth function, the welfare
function, the distribution of shocks and the discount rate. Our results indicate that,
unlike deterministic models, extinction and conservation in stochastic models are
not determined by a simple comparison of the growth rate and the discount rate;
the welfare function plays an important role.
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1 Introduction

Extinction of biological species is an important ecological concern of the current
age. Extinction is likely whenever a renewable resource is harvested persistently
at a rate exceeding the level required to sustain its current stock. The economics
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of extinction relates the depletion of resources to economic incentives that affect
harvesting. Traditionally, economists have related overexploitation of resources to
failures of markets and property rights. However, even if such failures are corrected
and society “manages” its resources optimally, the nature of intertemporal trade-
offs between current and future welfare that a society is willing to make can lead
to eventual extinction. It is, therefore, important to understand how intertemporal
preferences of society and the biological growth of resources interact to determine
the possibility of extinction and conservation for an optimally managed resource.

One important factor here is the sensitivity of biological growth to random
environmental fluctuations and the fact that persistent adverse environmental shocks
can severely deplete resource stocks. Such environmental uncertainty also affects
the incentive to harvest a resource. The nature of optimal exploitation and its effects
on the dynamics of biological populations when the growth process of a specie is
subject to random environmental shocks are not very well understood. In this paper
we undertake a systematic study of this issue and identify conditions under which the
following four scenarios occur: (i) the resource becomes extinct (with probability
one) starting from all positive initial stocks; (ii) the resource is conserved (with
probability one) from all positive initial stocks; (iii) there is a positive resource
stock (called a safe standard of conservation) such that, starting from all higher
stocks, the resource is conserved (with probability one); (iv) there is no such safe
standard of conservation.

Beginning with [4], much of the analysis of the economics of optimal extinc-
tion and conservation of renewable resources has been carried out in deterministic
models. The conventional wisdom from this literature suggests that stocks of an
optimally managed resource ought to be bounded away from zero as long as the re-
source has an intrinsic growth rate1 that exceeds the rate at which society discounts
the future; on the other hand, extinction is optimal if the resource is less produc-
tive than the discount rate.2 However, when the natural growth of the resource is
stochastic, comparing productivity of the resource to the discount rate is no longer
sufficient to characterize the possibility of extinction. Indeed, optimal stocks may
be arbitrarily close to zero no matter how productive the resource.3

One of the salient features of the natural growth of many species is that the
productivity or biological growth rate is low from small stocks, but it increases
as the stock becomes larger, though eventually the growth rate diminishes as the
environmental carrying capacity is approached. Therefore, the biological growth
or production function in a model of optimal renewable resource management is
typically non-concave (such as S-shaped). Our model of optimal resource man-
agement is, in fact, identical to a one-sector stochastic optimal growth model with

1 The intrinsic growth rate refers to the net productivity of the resource at zero.
2 If the intrinsic growth rate of the resource is less than the discount rate, then extinction is optimal

from small stocks. If the resource is globally less productive than the discount rate, global extinction is
optimal. See, among others, [11–13,7] and [6].

3 In an optimal stochastic growth model, it was shown in [17] that optimal stocks may not be bounded
away from zero even though the production function has infinite slope at zero (that is, the intrinsic growth
rate is infinite).
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non-concave production function.4 However, while economic growth models focus
on the existence, uniqueness and stability of a non-trivial invariant distribution for
capital stocks, our focus is on the phenomenon of extinction; that is, whether the
stocks approach zero over time and the probability with which this event occurs.5

We explore a model of optimal resource management by using the methods of
stochastic dynamic programming. The return function in the optimization exercise
(the net welfare function) depends on the harvest of the resource. The biological pro-
duction function and the optimal investment policy determine the transition function
governing the stochastic evolution of the resource stock. We determine conditions
on the primitives of the optimization problem, under which global extinction, global
conservation and the existence (and non-existence) of a safe standard of conserva-
tion will arise.

The existing literature on the problem of characterizing extinction and non-
extinction in terms of verifiable properties of the primitives of the dynamic op-
timization problem (intertemporal preferences and the biological growth or pro-
duction function), is rather small.6 In models of optimal stochastic growth, the
possibility of extinction is ruled out by assuming that the slope of the production
function is infinite at zero and that the worst realization of the random shock occurs
with strictly positive probability.7 An assumption of infinite marginal product at
zero is not well suited to our purpose because the rate of natural growth for most
biological species is rather small when the stock depletes to a level close enough to
zero.8 Indeed, in contrast to the stochastic growth literature, we wish to understand
the phenomenon of extinction and not rule it out by assumption. A recent paper on
stochastic growth [8] shows that if the marginal product at zero is finite, every fea-
sible path (including, therefore, any optimal path) converges to zero almost surely
provided the random shocks are “sufficiently volatile”.

In this paper, we allow the production function to have finite slope at zero and
the probability distribution of the random shock is assumed to be non-atomic with

4 The literature on stochastic optimal growth [3] typically assumes that the production function is
concave. For an analysis of the problem of stochastic optimal growth in a framework that allows for a
non-concave production function, see [14].

5 From the perspective of economic growth theory, our analysis is relevant to the question of exis-
tence and nature of poverty traps in a non-convex economy (even when it is on its first-best path). From
a methodological standpoint, it is worth noting that in establishing global stability of invariant distribu-
tions, models of economic growth impose fairly strong conditions to ensure that the capital stocks are
bounded away from zero. The conditions for avoidance of extinction in our analysis are significantly
weaker and suggest that convergence results in stochastic growth models may be obtained for a wider
class of production functions.

6 There is a significant literature on characterization of extinction and non-extinction in terms of the
transition law for a given Markov process (rather than the primitives of an economic model that generates
such transition law). For the special case of multiplicative shock with a smooth density function whose
support is the entire positive real line (so that from any current stock one may reach any interval of
stocks, however high or low, with strictly positive probability), [18] contains conditions on the transition
function under which the stochastic process converges globally to a degenerate distribution at zero (in
the norm topology) as well as conditions under which it converges globally to a unique distribution that
assigns zero probability mass at zero.

7 See, among others, [3,16] and [14].
8 See, for example, [5], and the references cited there.
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bounded support. We show that the net welfare from harvesting plays an important
role in the conditions for ruling out extinction. In general, our conditions are much
tighter than in the existing stochastic growth literature.

In the literature on renewable resource management under uncertainty,9 there is
no general analysis of conditions for extinction that can be verified from information
about the natural growth of the resource and the net welfare from harvesting. [20]
provides sufficient conditions for conservation in a model where an (s,S) investment
policy is optimal. When there are no fixed costs, these conditions assume that
welfare is linear in consumption and that the resource growth function is strictly
concave. Specialized models of a similar kind (with specific parametric form) are
analyzed in [2] and [9].10 The linearity in consumption of the welfare function in
these models implies that the conditions for conservation are solely determined by
the productivity of the resource relative to the discount rate. As our analysis will
establish, this does not hold when the net welfare function is non-linear. A more
general analysis of the conditions for conservation in a model where the utility
function depends on both consumption as well as resource stock is contained in
[19]; the condition for conservation provided in our model can be viewed as a
special case of that analysis when the marginal utility from resource stock is zero.
However, there is no analysis of conditions for non-existence of safe standard and
extinction in that paper.

Section 2 outlines the model and assumptions. Section 3 contains preliminary
results about the value function and the optimal policy as well as formal definitions
of concepts related to extinction and conservation. Section 4 contains the main
results of the paper on the conditions for conservation and extinction under optimal
management of the resource. All proofs are collected in Section 5.

2 The model

In this section, we outline a model where a renewable resource is harvested over
time according to the optimal dynamic decisions of a social planner (or monopoly
owner). The planner chooses a sequence of resource consumption (or investment)
levels in order to maximize the expected discounted sum of (one-period) social wel-
fare over an infinite horizon given a stochastic production function which summa-
rizes the biological growth possibilities and a known distribution of environmental
disturbances.

Time is discrete and is indexed by t = 0, 1, 2, ....The initial stock of the resource
y0 > 0 is given. Let Y = R+ be the state space for resource stocks.At each date t ≥
0, the current resource stock yt ∈ Y is observed and a harvest or consumption level,
ct, is chosen. The remaining stock represents resource investment or escapement,
xt = yt − ct. The feasible set for consumption and investment is denoted by
Γ (y) = {(x, c)|0 ≤ c, 0 ≤ x, c + x ≤ y}.

9 See, [10] and [5].
10 [1] analyzes possibility of immediate extinction in a framework where eventual extinction occurs

almost surely even if the resource is not harvested.
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There are random environmental shocks to the production (stock-recruitment)
process of the renewable resource. Let {rt} be an independent and identically
distributed random process defined on the probability space (Ω, F , P ), where the
marginal distribution is denoted by µ, and the support of this distribution is given
by the interval I = [a, b] with 0 < a < b < ∞.11

The biological growth of the resource is governed by a production function,
f : Y × I → Y, that determines the resource stock next period (gross output)
as a function of current investment in the stock and the environmental shock such
that yt+1 = f(xt, rt+1). The resource production or growth function is assumed
to satisfy the following:

(T.1) For all r, f(x, r) is strictly increasing in x; for all x, f(x, r) is non-decreasing
in r.

(T.2) For all r, f(0, r) = 0.

(T.3) f(x, r) is continuous in (x, r) on Y × I. For each r ∈ [a, b], f(x, r) is
differentiable in x on R++ and, further, f ′(x, r) is continuous on R++ × I.

(T.4) There exists x̄ > 0 such that f(x, b) < x for all x ≥ x̄; y0 ∈ (0, x̄].

Assumptions (T.1)–(T.3) are standard monotonicity and smoothness restrictions
on production. Assumption (T.4) is a bounded growth restriction typically associ-
ated with a natural carrying capacity for the ecosystem beyond which the resource
stock cannot grow.

The lower bound on the intrinsic growth rate (that is, the marginal product at
zero investment) is given by the lower right derivative of f, which is denoted by
D+f(0, r) = liminfx↓0f

′(x, r). Define ν = infr∈I [D+f(0, r)] to be the lower
bound on the intrinsic growth rate over all possible realizations of the random
shock. We assume

(T.5) ν > 0.

Assumption (T.5) ensures that the marginal product is bounded away from zero.
It allows for cases of critical depensation where for each r, f(x, r) < x for all x > 0
close to zero, so that extinction is inevitable from small stocks even if the resource
is never harvested. Of course, (T.5) also encompasses cases where for each r, the
marginal productivity at zero is greater than one so that the resource can sustain
itself from small stocks.

For each r ∈ [a, b], let

S(r) =
{

x̂ ≥ 0 :
[
f(x̂, r)

x̂

]
≥

[
f(x, r)

x

]
,∀x ≥ 0

}
, if lim inf

x↓0

[
f(x, r)

x

]
< ∞,

= {0}, otherwise.
11 More formally, let Ω be the space of all infinite sequences (ω1, ω2, . . . ) where ωt∈ [a, b] for

t ∈ N. Denote by B the collection of Borel subsets of [a, b]. Let F be the σ-algebra generated by
cylinder sets of the form

∏∞
n=1 An, where An ∈ B for all n ∈ N, and An = I for all but a finite

number of values of n. For each t ∈ N, denote by Ft the σ-algebra generated by cylinder sets of
the form

∏∞
n=1 An, where An ∈ B for all n ∈ N, and An = I for all n ≥ t + 1. Let P be the

product measure over F generated by the probability distribution µ over [a, b]. This defines a probability
space (Ω, F , P ). Next, define the projection rt (ω) = ωt for t ∈ N. Then {rt}∞

1 is a sequence of
independent and identically distributed random variables on (Ω, F , P ).
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Define

x̂(r) = sup{x : x ∈ S(r)}.

Thus, x̂(r) is the highest investment among the set of investments that maximize
average productivity corresponding to realization r of the random shock. In the
special case of a multiplicative shock, x̂(r) is identical for all r. We assume that:

(T.6) For each r ∈ [a, b], f(x, r) is concave in x on [x̂(r),∞).

Typically, biological resources are likely to exhibit low “productivity” or growth
rate when the biomass is small and productivity is likely to increase as the biomass
expands. That is, the production function is likely to be convex at low levels of
investment. As the resource exhibits bounded growth it is reasonable to assume (as
we do in assumption (T.6)) that eventually diminishing returns must set in.

Define

x̂ = sup
r∈[a,b]

x̂(r).

If x̂ > 0, then the production function is non-concave for at least some r. If the
production function is concave for all r, then x̂ = 0.

In the bio-economics literature, the population growth process is often specified
in terms of a (net) growth function that is non-monotonic (e.g., the logistic curve).
In our framework, the net biological growth is given by the function [f(x, r) − x]
which is non-monotonic in x. Our assumptions allow for non-concavity in net
growth (depensation), negative net growth at small stocks (critical depensation) as
well as the usual concave “inverse U-shaped” net growth function (compensation).12

The existing literature on resource allocation with non-concave production fo-
cuses on models where the resource growth function is S-shaped and where the
resource can always be sustained from low stocks. The model of resource growth
employed here generalizes these two restrictions. First, it allows for the possibility
of critical depensation where the resource is incapable of sustaining itself from low
stocks. In such cases, the important question is whether economic efficiency implies
conservation of the resource from large stocks. Second, the model in this paper con-
siders a broader class of growth functions than those that are S-shaped. Resource
growth is allowed to exhibit almost any pattern of increasing and decreasing returns
on the interval [0, x̂(r)].

Finally, we impose a technical restriction:

(T.7) For any x > 0, µ{r : f(x, r) > f(x, a)} = 1.

Assumption (T.7) implies that in any period, the probability that next period’s
stock is exactly equal to that obtainable under the worst production function is zero.
This has the effect of putting zero measure on the worst production function (which
is stronger than just putting zero measure on the worst realization of the random
shock).

The net social welfare in each period depends on current consumption and
is denoted by u(c). This welfare function can incorporate consumer and producer

12 See, [5].
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surplus from resource harvests. In the bio-economics literature, it is typically viewed
as the social benefit from the harvesting (through direct consumption, use in other
production processes or though international trade) net of the cost of economic
inputs used in harvesting the resource (such as labor and capital used in fishing).
For a monopolist’s dynamic optimization problem, u(c) would denote the current
profit from harvest c.

The objective is to maximize the expected discounted sum of social welfare
over time, where δ ∈ (0, 1) is the discount factor. Let � = �∪{−∞}. The welfare
function satisfies the following restrictions:

(U.1) u : Y → � is concave on Y ; limc↓0 u(c) = u(0).

(U.2) u is continuously differentiable on R++.

(U.3) Either (i) there exists a ξ > 0 such that u′(c) > 0 for all c ∈ (0, ξ) and
u′(c) < 0 for all c > ξ, or (ii) u′(c) > 0 for all c ∈ R++.

Assumptions (U.1) and (U.2) are standard. Note that we allow the utility of
zero consumption to be −∞. Further, we do not assume strict concavity of u so
that, in particular, we allow the utility to be linear. Assumption (U.3) is weaker than
the typical assumption in stochastic growth models that u is increasing over the
domain of c. It implies that welfare is either increasing or unimodal in c; that is,
there is a unique strictly positive consumption that maximizes u. This allows for
the possibility that marginal harvest costs might exceed marginal benefits at large
harvest levels so that excessive consumption might decrease instantaneous welfare.
In case u′(c) > 0 for all c ∈ R++, we define ξ = ∞.

3 Preliminaries

In this section, we define basic concepts and outline preliminary results on the
optimal policy, the stochastic process of optimal stocks, extinction and conservation.

3.1 Optimal policy

The decision-maker in the stochastic environment (outlined in the previous section)
can take decisions dependent on the history of past states and decisions. To formalize
this decision-making process, we start by defining histories.

The partial history at date t is given by ht=(y0,x0,c0,. . .,yt−1,xt−1,ct−1,yt).A
policy π is a sequence {π0, π1, . . . } where πt is a conditional probability measure
such that πt(Γ (yt)|ht) = 1. A policy is Markovian if for each t, πt depends only
on yt. A Markovian policy is stationary if πt is independent of t.

Associated with a policy π and an initial state y is an expected discounted sum
of social welfare:

Vπ(y) = E

∞∑
t=0

δtu(ct),
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where {ct} is generated by π, f in the obvious manner and the expectation is taken
with respect to P .

The value function V (y) is defined by:

V (y) = sup{Vπ(y) : π is a policy}.

Assumption (T.4) ensures that, given any policy π, we have Vπ(y) < ∞ for all
y > 0. We assume that:

(V.1) There exists a policy π such that Vπ(y) > −∞ for all y > 0.13

Thus, the dynamic optimization problem is well defined and the value is finite
from any initial state.

A policy, π∗, is optimal if Vπ∗(y) ≥ Vπ(y) for all policies π and all y and
Vπ∗(y) = V (y). Standard dynamic programming arguments (see, Theorem 5.2 and
Theorem 16.2 in [21])14 imply that there exists an optimal policy that is stationary
and the value function satisfies the functional equation:

V (y) = sup
x∈Γ (y)

[u(y − x) + δE[V (f(x, r)]]. (3.1)

Further, V is non-decreasing15 and continuous. Let X(y) be the set of max-
imizers of the expression on the right hand side of (3.1). Then, X(y) is the
optimal policy correspondence. Any function H(y) generates a stationary opti-
mal policy if, and only if, H(y) is a measurable selection from X(y). X(y)
is an upper-hemicontinuous correspondence that admits a measurable selection.
X(y) will be referred to as the (stationary) optimal investment correspondence,
while C(y) = y − X(y) will be called the optimal consumption correspondence.
The minimum and maximum selections from X(y) are denoted (respectively) by
Xm(y) = min{x : x ∈ X(y)}, and XM (y) = max{x : x ∈ X(y)}.

It can be shown that the optimal investment correspondence X(y) has certain
monotonicity properties. More precisely:

Lemma 1 Xm(y) and XM (y) are non-decreasing in y on Y.

13 If ν > 1 or u(0) > −∞, then this always holds. If neither of these conditions hold (a possibility
not ruled out by our assumptions), then this can be ensured if the discount factor is smaller than a critical
value that depends on u and ν.

14 Let S = [0, x] be the state space and A = [0, 1] be the action space where choosing an action
a ∈ A when the current stock is y implies that current consumption is ay yielding utility u(ay). As u
is bounded above on S,we can choose a modified utility function W (ay) = u(ay) − B where B is
a constant that is an upper bound of u on S. Then, W ≤ 0 and therefore, following the remark in the
last paragraph of p. 181 in [21], Condition C in that paper is satisfied. The constraint correspondence
is constant valued and hence upper hemi continuous. The weak continuity of the transition law follows
from the continuity assumption on f (see, Lemma 2 in [14] for a precise proof of this). Using (U.1),
one can check that all of the requirements for Condition W in Section 16 of [21] are satisfied. Theorem
16.2 then implies the existence of a stationary optimal policy (see Statement III on p. 186). Theorem 5.2
establishes the functional equation. The optimal policy for the modified problem can be easily shown to
be optimal in the original problem and the functional equation for the original problem can be derived
from the modified problem.

15 Even though u is decreasing on (ξ, ∞), it is easy to check that from every current stock, optimal
consumption must necessarily lie in [0, ξ] a.s., so that the standard arguments about monotonicity of V
applies.
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When resource stocks are optimally managed over time using an optimal in-
vestment function H(y), a measurable selection from X(y), the transition function
for resource stocks is given by:

yt(y, ω) = f(H(yt−1(y, ω)), ωt) for t ≥ 1, (3.2)

and y0(y, ω) = y.16

Note that the optimal investment correspondence X(y) is upper hemi-
continuous but it does not necessarily admit a continuous selection; in particular,
both Xm(y) and XM (y) may be discontinuous.

In general, the optimal investment and/or consumption need not lie in the interior
of the feasible set. The following lemma outlines a condition which guarantees that
optimal investment in the resource is strictly positive from all stocks y > 0.

Lemma 2 Assume that for all y > 0,

δ

{
lim
c↓0

u′(c)
}

E(D+f(0, r)) > u′(y). (3.3)

Then Xm(y) > 0 for all y > 0.

The condition outlined in this lemma is always satisfied if u′(c) → ∞ as c → 0.
It is also satisfied if the marginal utility of consumption is bounded above but the
technology is delta-productive in expected terms; that is, if E(D+f(0, r)) > 1/δ.
The lemma encompasses the standard Inada condition used to guarantee interior
investment in classical optimal growth models (see, for example, [3]).

In the classical growth model, the Inada condition also guarantees that optimal
consumption is strictly positive, which our condition does not do. In fact, in the
stochastic non-convex dynamic optimization framework, guaranteeing that opti-
mal consumption is strictly positive from all initial stocks by a general verifiable
restriction on technology and preferences requires us to impose rather strong con-
ditions. If the production function is concave in input, then an assumption such as
u′(c) → ∞ as c → 0 is sufficient to ensure that optimal consumption is strictly
positive; this also holds if the production function is non-concave but there is no
uncertainty. However, it is not known whether this condition suffices in general
when the technology is both stochastic and non-convex. For example, in [14], it is
assumed that u(0) = −∞ in order to ensure that optimal consumption is always
positive. In [18], it is shown that if the random shock is multiplicative with sup-
port equal to the positive real line and has a smooth density function, then optimal
consumption policy is strictly positive under the restriction that u′(c) → ∞ as
c → 0.

To conclude this subsection, we note that the stochastic Ramsey-Euler equation
holds in case of an interior optimal policy.

Lemma 3 Let x(y) be a measurable selection from X(y) and c(y) = y − x(y). If
c(ŷ) > 0 for some ŷ > 0, then

u′(c(ŷ)) ≥ δE[u′(c(f(x(ŷ), r)))f ′(x(ŷ), r)]. (3.4a)

16 yt(y, ω) is Ft measurable for all t ∈ N.
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where u′(0) = limc↓0 u′(c), f ′(0, r) = lim infx↓0 f ′(x, r). If c(ŷ) ∈ (0, ŷ) for
some ŷ > 0 and, further, c(y) ∈ (0, y),∀y ∈ [f(x(ŷ), a), f(x(ŷ), b)] then:

u′(c(ŷ)) = δE[u′(c(f(x(ŷ), r)))f ′(x(ŷ), r)]. (3.4b)

3.2 Concepts of extinction and conservation

We begin with the notion of a safe standard of conservation which occupies a central
role in the renewable resource literature. In the deterministic literature, a level of
resource stock is said to be a safe standard of conservation if optimal paths from
all initial stocks lying above the standard are bounded below by the standard. In
other words, if we know that the current resource stock lies in the region above the
standard, we know it will always be there (even though optimal paths may converge
to zero from stocks below the standard).

A natural way to extend this concept to the stochastic case is to require that
the safe standard be an almost sure lower bound for optimal processes of resource
stocks, if the initial state lies in the region above the standard. Formally, a stock
y∗ > 0 is said to be a safe standard of conservation if :

P

{
ω ∈ Ω : lim inf

t≥0
yt(y, ω) ≥ y∗

}
= 1, (3.5)

for all y > y∗. Note that the definition allows the optimal path from y∗ itself to be
arbitrarily close to zero with positive probability. The potential discontinuity in the
optimal policy function implies that the transition function for the optimal stocks
in (3.2) may have a jump discontinuity at the safe standard and though the right
hand limit of the function at y∗ may be large enough to guarantee that the stocks
never fall below y∗ from any stock y > y∗, the same need not be true if the current
stock is equal to y∗.

A situation where there are stocks arbitrarily close to zero that are safe standards
of conservation is defined as global conservation. Under this definition of global
conservation, the resource is bounded away from zero independent of the initial
stock (provided it is greater than zero). More formally, global conservation requires
that for every ε > 0, there exists y∗ ∈ (0, ε) such that (3.5) holds. Note that global
conservation implies17

P{ω ∈ Ω : lim inf
t≥0

yt(y, ω) > 0} = 1,∀y > 0. (3.6)

Next, we outline the concept of extinction. Extinction needs to be defined in a
way so as to encompass the event that the resource stock is reduced to zero in finite

17 It is possible to think of a weaker notion of global conservation where

P

{
ω ∈ Ω : lim sup

t≥0
yt(y, ω) > 0

}
= 1, ∀y > 0.

We do not use this concept as it is extremely difficult to derive verifiable conditions on the primitives of
our optimization model that ensures this but not (3.6).
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time as well as the event that the stocks, while never being actually reduced to zero,
become arbitrarily small over time. Extinction is said to occur from an initial stock
y > 0 if:

P
{

ω ∈ Ω : lim
t→∞ yt(y, ω) = 0

}
= 1. (3.7)

Global extinction is said to occur if extinction occurs from all initial stocks y > 0.
Under global extinction, there is no safe standard of conservation. However, a

weaker condition than (3.7) under which optimal stocks approach zero infinitely
often with positive probability is also sufficient to rule out the existence of a safe
standard of conservation.

4 Conditions for extinction and conservation

In this section, we outline verifiable conditions on the technology and intertemporal
preferences under which the stochastic process of resource stocks generated by an
optimal investment policy is characterized by conservation or extinction. As men-
tioned earlier, the optimal policy is not necessarily unique in our framework. The
conditions we outline in this section ensure conservation or extinction of stocks
when harvesting follows any stationary optimal policy (i.e., that generated by any
measurable selection from the optimal investment correspondence X(y)). In par-
ticular, we establish conditions that lead to (i) the existence of a safe standard, (ii)
global conservation; (iii) non-existence of safe standard of conservation and (iv)
global extinction for any any measurable selection from the optimal

4.1 Safe standard of conservation

First, we examine the conditions under which there is a safe standard of con-
servation. For this purpose, we analyze the stochastic process of optimal resource
stocks when the optimal investment function selected from X(y) is the lower bound
Xm(y). For any initial stock y > 0, consider the sequence of optimal stocks {yt(y)}
defined by y0(y, ω) = y and:

yt(y, ω) = f(Xm(yt−1(y, ω), ωt)) for t ≥ 1. (4.1)

In order to establish the existence of a safe standard, we will establish conditions
which ensure that:

f(Xm(ŷ), a) ≥ ŷ for some ŷ > 0. (4.2)

Using induction, it is easy to see that (4.2) implies that for y ≥ ŷ, t ≥ 1,

yt(y, ω) = f(Xm(yt−1(y, ω), ωt)) ≥ f(Xm(ŷ), a) ≥ ŷ,

with probability one.
Before we go into aspects of the problem that involve intertemporal trade-offs,

there is one class of readily identifiable situations in which there is always a safe
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standard of conservation. If the marginal utility from consumption is negative when
investment falls below the level needed to replenish the stock to its current level
under the worst productivity shock, then investment by even a myopic agent will be
sufficient to at least replenish the stock. Since an optimizing agent never consumes
more than a myopic one, this ensures a safe standard.

Proposition 1 Suppose that u′(f(x, a) − x) ≤ 0 for some x > 0, then the stock
f(x, a) is a safe standard of conservation.

Next, we consider situations where the hypothesis of Proposition 1 does not
hold; that is, where marginal welfare from consuming an amount which allows the
stock to be replenished to its current level even under the worst shock is positive.
This is always true if u is a strictly increasing function. To obtain a tight condition
for conservation it is necessary to overcome the technical difficulties caused by
the non-convexity in the feasible set for the dynamic optimization problem when
the production function is not concave. Our methodology is to first consider the
convexified resource allocation problem obtained by taking the convex hull of
the production possibility set for each r. Recall the definition of input level x̂ in
Section 2; f(x, r) is concave in x for all x ≥ x̂. We derive a condition that ensures
a safe standard of conservation (for this modified optimization problem) which lies
above x̂. This implies that the optimal investments for the modified problem lie in
the convex part of the original production possibility set. This allows us to show that
the safe standard for the modified problem is also a safe standard for the original
problem.

Proposition 2 If there is some x ≥ x̂ such that f(x, a) > x, and:

inf
max(f(x,a)−ξ,0)≤z≤x

δE

[
u′(f(x, r) − z)
u′(f(x, a) − z)

f ′(x, r)
]

> 1, (4.3)

then f(x, a) is a safe standard of conservation.

In the deterministic version of this model with an S-shaped production function,
the condition for existence of a safe standard of conservation is that at some positive
input level, the average productivity of the resource growth function should exceed
the discount rate; that is, the production function should be delta-productive (see,
among others, [12,7]). Note that the welfare function plays no role in this condi-
tion for existence of a safe standard. The condition given in Proposition 2 should
be looked at as a modification of this delta-productivity condition in the stochastic
model. The requirement is of the form δE[Ψ(x, r)f ′(x, r)] > 1 where the term
Ψ(x, r) represents welfare effects involving ratio of marginal utilities from con-
sumption and is directly linked to the stochastic nature of the model.

The interpretation of the condition in Proposition 2 is as follows. Given the worst
production from some investment level consider a policy that depletes the resource
below the original level. If all such policies have a marginal value of consumption
strictly less than the expected discounted marginal value of investment, then it
must be the case that the optimal investment is one that sustains the stock. Since
optimal investment is monotonic in current stock, the stock is conserved under all
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productivity shocks and from any larger initial stock. The fact that the resource
production function is stochastic implies that the marginal value of investment is
evaluated over all possible realizations of the environmental disturbance. The ratio
of the marginal value of investment to the marginal utility of current consumption
generally differs across states of nature. The welfare effects associated with Ψ(x, r)
represent a lower bound on the ratio of the marginal gain in value from an increase
in investment to the marginal welfare sacrificed by the corresponding reduction in
current consumption. Thus, unlike the deterministic case, the welfare function plays
a crucial role in determining whether or not a safe standard exists in the stochastic
model.

Note that Ψ(x, r) < 1 for each r > a so that the condition is actually stronger
than requiring that delta-productivity hold in “expected terms”. This is not surpris-
ing once we consider the fact that the condition is designed to ensure that even
under the worst environmental shock, the stock size is sustained from a certain
level onwards. Also observe that Ψ(x, r) = 1 if there is no production uncertainty
and in that case the condition in Proposition 2 simply reduces to the standard delta-
productivity condition found in deterministic models.

4.2 Global conservation

Now, we examine the conditions that ensure global conservation. We continue to
focus on the optimal policy generated by Xm(y).

Recall that our definition of global conservation requires that for every ε > 0,
there exists y∗ ∈ (0, ε) such that y∗ is a safe standard of conservation. From
the discussion in the previous subsection, it is easy to see that to ensure global
conservation it is sufficient to show that there exists ε > 0 such that

f(Xm(y), a) ≥ y for all y ∈ (0, ε). (4.4)

In particular, this requires that f(x, a) ≥ x in a neighborhood of zero: even under
the worst shock, the resource production function should not be characterized by
critical depensation.

In our analysis of a safe standard of conservation, we were able to obtain consid-
erable leverage by taking the convex hull of production possibilities and by studying
the modified dynamic optimization problem on a convex feasible set. This was a
fruitful approach because the best hope for finding a safe standard of conservation
is in the region where average productivity of the resource is maximized. Further,
for stocks above this region, and for the class of resource production functions ad-
missible under (T.1)-(T.7), the convex hull coincides with the original production
possibilities for the resource. Unfortunately, this approach is not useful in analyzing
global conservation, because it requires conservation in a neighborhood of zero,
which is precisely where resource production possibilities are most likely to exhibit
non-convexities.
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Proposition 3 Suppose that ν > 1. Then global conservation is optimal if the
following condition holds:

lim inf
x↓0

δE

[
u′(f(x, r))

u′(f(x, a) − x)
f ′(x, r)

]
> 1. (4.5)

Proposition 3 is the natural analogue of Proposition 2 for stocks approaching
zero. The basic idea underlying condition (4.5) in Proposition 3 is straightforward:
if under the worst production shock from stocks close to zero, a policy that further
depletes the stock has a marginal value of consumption that is strictly less than the
(expected discounted) marginal value of zero investment, then optimal investment
must be one that leads to conservation.

In deterministic versions of the model, the condition for global conservation
is typically a requirement that the net marginal productivity at zero (the intrinsic
growth rate) exceed the discount rate. One can look at the expression:

lim inf
x↓0

E

[
u′(f(x, r)

u′(f(x, a) − x)
f ′(x, r)

]
− 1.

as the expected welfare-modified intrinsic growth rate of the specie which has to
exceed the discount rate [ 1δ −1] in order for global conservation to be optimal. Note
that the expression above is smaller than the expected net marginal productivity at
zero. Therefore, as in the case of the condition for safe standard, our condition for
global conservation is stronger than “expected delta-productivity”.18

4.3 Non-existence of safe standard and global extinction

In this final subsection, we outline the conditions under which there is no safe
standard of conservation as well as conditions under which it is optimal to lead the
resource towards extinction from all stocks with probability one. For this purpose
we shall focus on the optimal investment function given by XM (y), so that our
condition would ensure the same properties for any measurable selection from
X(y).

In the deterministic version of the model, global extinction occurs if the marginal
productivity of investment never exceeds (1/δ). In our stochastic model, we will
show that if the resource is not delta-productive from any stock in an expected
sense, then a weaker result holds: there is no safe standard of conservation.

The proof of this result uses the Ramsey-Euler equation and requires that op-
timal consumption be positive. Observe that if for any x > 0, marginal utility of
consuming an amount [f(x, a)−x] is negative, then as noted in Proposition 1, there
is always a safe standard of conservation (no matter how severe the discounting).
Therefore, our condition for non-existence of safe-standard will also require that
f(x, a) − x < ξ (where ξ is defined in (U.3)) for all relevant x.

18 Unlike the condition outlined for existence of safe standard, when uncertainty vanishes the condition
for global conservation does not reduce to the corresponding condition in the deterministic model.
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Proposition 4 Suppose that optimal consumption is strictly positive from all pos-
itive initial stocks below x̄ (that is, XM (y) < y for all y ∈ (0, x̄] ) and that
f(x, a) − x < ξ for all x ∈ [0, x̄]. In addition, suppose that δE[f ′(x, r)] < 1 for
all x ∈ (0, x̄]. Then, there does not exist a safe standard of conservation.

In the previous two subsections, we have seen that the sufficient conditions for
conservation in the stochastic model are stronger than the “expected” version of
the conditions for conservation in comparable deterministic models. Thus, simply
requiring the technology to be delta-productive in expected terms is not sufficient
to ensure conservation. It is therefore intuitive that the conditions for non-existence
of safe standard ought to be weaker than the “expected” version of the conditions
found in deterministic model. Thus, if the resource is never delta-productive in
expected terms (that is, the expected growth rate of the specie is always lower than
the discount rate), then this ought to be sufficient for non-existence of safe standard.

The non-existence of a safe standard of conservation does not necessarily imply
that optimal stocks converge to zero globally. To ensure global extinction, one needs
stronger conditions. The next proposition outlines such conditions.

Proposition 5 Assume that the antecedent of Proposition 4 holds. Further, assume
that at least one of the following holds:

(i) there exists α > 0 such that f(x, b) < x for all x ∈ (0, α);
(ii) there exists x̃ > 0 such that f(x, a) > x,∀x ∈ (0, x̃) and there exists α > 0

such that f(α, b) < x̃, and

δE[u′(β(f(x, r)))f ′(x, r)]
u′(f(x, b) − x)

< 1,∀x ∈ (0, α),

where β(y) ∈ (0, y) is defined by

f(y − β(y), a) = y.

Then, global extinction is optimal.

Note that condition (i) of Proposition 5 corresponds to a situation where the
production function exhibits critical depensation even under the best realization
of the random shock. Condition (ii) is a rather strong restriction on the welfare-
modified expected delta-productivity and applies only to resources which do not
exhibit critical depensation even under the worst realization of the random shock.

5 Proofs

Proof of Lemma 1. We show that Xm(y) is non-decreasing (the proof for XM

is similar). Suppose, to the contrary, that there exist y1, y2, x1, x2 ∈ Y, x1 =
Xm(y1), x2 = Xm(y2) such that

y1 < y2, x1 > x2.
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This implies that 0 ≤ x2 < x1 ≤ y1 < y2 and that

y2 − x2 > y1 − x2 ≥ 0, y2 − x1 > y1 − x1 ≥ 0.

Concavity of u implies

u(y2 − x2) − u(y2 − x1) ≤ u(y1 − x2) − u(y1 − x1).

Since x2 is feasible from stock y1, x1 is feasible from stock y2 and x2 < x1 =
Xm(y1), we have x2 /∈ X(y1). Then, (3.1) implies

u(y1 − x1) + δE[V (f(x1, r))] > u(y1 − x2) + δE[V (f(x2, r))].
u(y2 − x1) + δE[V (f(x1, r))] ≤ u(y2 − x2) + δE[V (f(x2, r))].

Combining the above two inequalities yields:

u(y2 − x2) − u(y2 − x1)
≥ δE[V (f(x1, r)) − V (f(x2, r))] > u(y1 − x2) − u(y1 − x1),

which is a contradiction.

Proof of Lemma 2. Suppose that for some y > 0, we have Xm(y) = 0. Consider
an alternative policy from y, where ε ∈ (0, y) is invested, (y − ε) is consumed in
the initial period, and the entire output f(ε, r) > 0 is consumed in the next period.
From the definition of optimality, we must have:

0 ≤ [u(y) + δu(0)] − [u(y − ε) + δEu(f(ε, r))]

= ε

[{
(u(y) − u(y − ε))

ε

}
−

{
δ(Eu(f(ε, r)) − u(0))

ε

}]

= ε

[{
(u(y) − u(y − ε))

ε

}
− E

{
(u(f(ε, r)) − u(0))

f(ε, r)

} {
δf(ε, r)

ε

}]
.

For ε near zero, the right hand expression above is negative, by using (3.3), and this
contradiction establishes the result.

Proof of Lemma 3. First we establish (3.4a). Consider y > 0 such that c(y) > 0.
Choose 0 < ε < c(y). From (3.1), it follows that

u(c(y)) + δE[V (f(x(y), r))] ≥ u(c(y) − ε) + δE[V (f(x(y) + ε, r))],

so that

u(c(y)) − u(c(y) − ε) ≥ δE[V (f(x(y) + ε, r)) − V (f(x(y), r))]
≥ δE[u(c̃(r) + η(ε, r)) − u(c̃(r))],

where c̃(r) = c(f(x(y), r)), η(ε, r) = f(x(y)+ε, r)−f(x(y), r). Using concavity
of u, we obtain:

u′(c(y) − ε) ≥ δE

[
{u′(c̃(r) + η(ε, r))}

{
η(ε, r)

ε

}]
.
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Taking the lim inf as ε ↓ 0 on both sides of the inequality (and using Fatou’s
lemma), we obtain (3.4a).

Next, consider the proof of (3.4b). Consider ŷ > 0 such that 0 < c(ŷ) < ŷ
and, in addition, c(y) > 0,∀y ∈ [f(x(ŷ), a), f(x(ŷ), b)]. Since, (3.4a) holds, it is
sufficient to show that

u′(c(ŷ)) ≤ δE[u′(c(f(x(ŷ), r)))f ′(x(ŷ), r)]. (5.1)

As c(y) > 0,∀y ∈ [f(x(ŷ), a), f(x(ŷ), b)], using the upper-hemicontinuity of the
correspondence X(y), it can be shown that19

ϑ = inf{c : c = y − x, x ∈ X(y), y ∈ [f(x(ŷ), a), f(x(ŷ), b)]} > 0.

LetK = max{ŷ, x}.Sincef is continuous on�+×[a, b], it is uniformly continuous
on [0, K] × [a, b]. Therefore, if we choose ε > 0 to be small enough, then

min
r∈[a,b]

{f(x(ŷ), r) − f(x(ŷ) − ε, r)} <
ϑ

2
.

In particular, let ε < x(ŷ)
2 . From (3.1), it follows that

u(c(y)) + δE[V (f(x(y), r))] ≥ u(c(y) + ε) + δE[V (f(x(y) − ε, r))],

so that

u(c(y) + ε) − u(c(y)) ≤ δE[V (f(x(y), r)) − V (f(x(y) − ε, r))]
≤ δE[u(c(r)) − u(c(r) − g(ε, r))],

where c(r) = c(f(x(ŷ), r)), g(ε, r) = f(x(ŷ), r) − f(x(ŷ) − ε, r). Observe that,
c(r) ≤ ξ and g(ε, r) < ϑ

2 < c(r),∀r ∈ [a, b]. Using concavity of u, we obtain:

u′(c(y) + ε) ≤ δ

∫ b

a

[
{u′(c(r) − g(ε, r))}

{
g(ε, r)

ε

}]
dµ(r). (5.2)

Note that for a.e. r ∈ [a, b], 0 ≤ [{u′(c(r) − g(ε, r))}] < u′(ϑ
2 ) and further (using

T.3), max{f ′(z, r) : x(ŷ)
2 ≤ z ≤ x(ŷ), r ∈ [a, b]} < ∞. Therefore, one can

take the limit as ε → 0 on both sides of (5.2) and use the dominated convergence
theorem to establish (5.1).

Proof of Proposition 1. Since u′(f(x, a) − x) ≤ 0, we have Xm(f(x, a)) ≥ x,
and f(Xm(f(x, a)), a) ≥ f(x, a) so that (4.2) holds at ŷ = f(x, a).

Proof of Proposition 2. Recall the definitions of x̂(r) and x̂ in Section 2, and define
a modified production function F (x, r) as follows:

F (x, r) =




[
f(x̂(r), r)

x̂(r)

]
x for x ∈ [0, x̂(r)),

f(x, r) for x ≥ x̂(r).

19 See, for example, the proof of Lemma 2A, a part of the proof of Theorem 5 in [14].
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Clearly, F (x, r) is concave in x for all r, and F is identical to f for x ≥ x̂.
We first show that in the modified dynamic optimization problem in which F

replaces f, there exists a safe standard of conservation which lies above f(x̂, a) =
F (x̂, a).

For the modified problem, let W denote the value function, and χ the optimal
investment policy correspondence.20 Define χm(y) = min{x : x ∈ χ(y)}. Since
F (x, r) is concave in x, it is easy to show that W (y) is concave in y. Denote the
right hand derivative of W at any y > 0 by W ′

+(y). If c is an optimal consumption
from y in the modified problem, then it can be shown that:21

W ′
+(y) ≥ u′(c),

and if c > 0, then W is differentiable at y, with:

W ′(y) = u′(c).

Let x ∈ (x̂, x̄), and define y′ = F (x, a) = f(x, a), and x′ = χm(y′). We
will now show that x′ ≥ x, so that the stock y′ = f(x, a) is a safe standard
of conservation in the modified problem. Suppose, on the contrary that x′ < x.
Since x′ is an optimal investment from stock y′ = f(x, a), it must be the case that
u′(f(x, a) − x′) ≥ 0, so that x′ ≥ max{f(x, a) − ξ, 0}. Thus, we get:

x > x′ ≥ max{f(x, a) − ξ, 0}. (5.3)

Observe now that y′ − x′ = f(x, a) − x′ > 0 and therefore the principle of
optimality yields for 0 < ε < y′ − x′,

u(y′ − x′) − u(y′ − x′ − ε) ≥ δE[W (F (x′ + ε, r)) − W (F (x′, r))].

Using Fatou’s lemma, this yields:

u′(y′ − x′)

≥ lim inf
ε↓0

δE

{[
W (F (x′+ε, r))−W (F (x′, r))

F (x′+ε, r)−F (x′, r)

] [
F (x′+ε, r)−F (x′, r)

ε

]}

≥ δE

{
lim inf

ε↓0

[
W (F (x′+ε, r))−W (F (x′, r))

F (x′+ε, r)−F (x′, r)

] [
F (x′+ε, r)−F (x′, r)

ε

]}
= δE{W ′

+(F (x′, r))F ′(x′, r)}. (5.4)

Since x′ < x, we get:

δE{W ′
+(F (x′, r))F ′(x′, r)} ≥ δE{W ′

+(F (x, r))F ′(x, r)}
≥ δE{u′(F (x, r) − χm(F (x, r))F ′(x, r)}
≥ δE{u′(F (x, r) − x′)F ′(x, r)}. (5.5)

20 In our framework, u is not assumed to be strictly concave, and F (x, r) is not strictly concave when
x̂ > 0. Thus, there need not be a unique solution to the maximization problem on the right hand side
of the functional equation of dynamic programming.

21 See, for example, [16].
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the last inequality in (5.5) following from the fact that χm(F (x, r)) ≥ x′ =
χm(F (x, a)). Since x > x̂, we have F (x, r) = f(x, r) and F ′(x, r) = f ′(x, r).
Thus, (5.4) and (5.5) yield:

u′(f(x, a) − x′) ≥ δE{u′(f(x, r) − x′)f ′(x, r)}. (5.6)

But this contradicts condition (4.3) of the Proposition, given (5.3).
Thus, we have established that x′ = χm(f(x, a)) ≥ x. That is, in the modi-

fied dynamic optimization problem, the stochastic process of optimal investments
generated by χm starting from any initial stock y ≥ f(x, a) is bounded below by
x for almost every ω ∈ Ω, and the optimal stocks are bounded below by f(x, a)
for almost every ω ∈ Ω. Since x > x̂, for any initial stock y0 ≥ f(x, a), the pol-
icy generated by χm is feasible in the original (non-convex) dynamic optimization
problem. As the feasible set in the modified problem always includes the feasible
set in the original problem, the policy generated by χm from y0 ≥ f(x, a) must
also be optimal in the original problem.

Now, consider the optimal policy generated by Xm in the original optimization
problem and suppose that Xm(f(x, a))< x. The expected discounted sum of utility
generated by this policy from initial stock f(x, a) must be exactly identical to that
generated by the policy χm from the same initial stock (since both are optimal in
the original problem). But since χm is also optimal in the modified problem, the
policy generated by Xm must also be optimal in the modified problem. In other
words, Xm(f(x, a)) ∈ χ(f(x, a)). Then, χm(f(x, a)) ≥ x > Xm(f(x, a)) and
χm = min{x : x ∈ χ(y)} yield a contradiction.

Therefore, Xm(f(x, a)) ≥ x and f(x, a) is always a safe standard of conser-
vation for the original problem.

Proof of Proposition 3. First we show that Xm(y) > 0 for all y > 0. This follows
directly from Lemma 2 if limc↓0 u′(c) = +∞. So, consider the situation when
limc↓0 u′(c) < +∞. Since f(x, r) ≥ f(x, a) > f(x, a) − x for x > 0 and u is
concave, (4.5) implies that δE[D+f(0, r)] > 1 and using Lemma 2, we have the
result. Next, we show that there exists η > 0 such that f(Xm(y), a) ≥ y for all
y ∈ (0, η).

Suppose on the contrary that there exist sequences {xn} and {yn}, with xn ↓ 0
and yn ↓ 0 as n → ∞, such that:

f(xn, a) < yn and xn = Xm(yn) for n ≥ 1.

Then, we have:

u′(yn − xn) ≤ u′(f(xn, a) − xn) for n ≥ 1. (5.7)

Since 0 < xn < yn for n ≥ 1, cn = yn − xn > 0, the inequality (3.4a) yields:

u′(yn − xn) ≥ δE{u′(f(xn, r) − Xm(f(xn, r))f ′(xn, r)}
≥ δE{u′(f(xn, r))f ′(xn, r)}. (5.8)

Combining (5.7) and (5.8), we get:

δE

[{
u′(f(xn, r))

u′(f(xn, a) − xn)

}
f ′(xn, r)

]
≤ 1. (5.9)
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Letting n → ∞ in (5.9), we contradict condition (4.5) of the Proposition.

Proof of Proposition 4. Suppose to the contrary that there exists a safe standard
of conservation y∗ > 0 so that under the policy generated by the optimal invest-
ment function XM , starting from any initial stock y ∈ (y∗, x̄], the optimal stocks
{yt(y, ω)} are bounded below by y∗ for almost every ω ∈ Ω.

Let x̃ > 0 be defined by f(x̃, a) = y∗. Then, XM (y) ≥ x̃ for all y ∈ (y∗, x̄].
Using upper-hemicontinuity of the correspondence X(y), there exists x ∈ X(y∗)
such that x ≥ x̃. Therefore, XM (y∗) ≥ x̃ and XM (y) ≥ x̃ > 0 for all y ∈ [y∗, x̄].

By assumption, y − XM (y) > 0 for all y ∈ (0, x̄]. Define:

ĉ = inf{(y − XM (y)) : y ∈ [y∗, x̄]}.

Using the upper hemi-continuity of the optimal investment correspondence
X(y), it can be shown22 that (i) ĉ > 0 , (ii) there exists ŷ ∈ [y∗, x̄] such that ĉ is
the optimal consumption from stock ŷ; that is,

ŷ − XM (ŷ) = ĉ, (5.10)

and (iii) from any initial stock y ∈ [y∗, x̄], for t ≥ 1,

ct(y, ω) = yt(y, ω) − XM (yt(y, ω)) ≥ ĉ > 0, for a.e. ω ∈ Ω. (5.11)

It can verified that that ĉ < ξ so that u′(ĉ) > 0.23 Given the interiority of the
optimal policy generated by XM from y ∈ [y∗, x̄], (3.4b) yields:

u′(ŷ − XM (ŷ)) = δE{u′(y1(y, ω) − XM (y1(y, ω)))f ′(XM (ŷ), ω1)}. (5.12)

Using (5.10) and (5.11) in (5.12), we obtain: u′(ĉ) ≤ u′(ĉ)δE{f ′(XM (ŷ), ω1)}
which contradicts the fact that δE{f ′(XM (ŷ), ω1)} < 1. Thus, there is no safe
standard of conservation.

Proof of Proposition 5. Proposition 4 implies that there does not exist a safe standard
of conservation. We first show that this implies that for all h > 0:

sup
{

f(XM (y), a)
y

: y ≥ h

}
< 1. (5.13)

To see (5.13), suppose on the contrary there exists some h > 0 for which

sup
{

f(XM (y), a)
y

: y ≥ h

}
≥ 1.

22 See, for example, the proof of Lemma 2A, a part of the proof of Theorem 5, in [14].
23 Suppose not. Since optimal consumption always lies in [0, ξ], it must be the case that ĉ = ξ.

As ĉ = inf{y − XM (y) : y ∈ [y∗, x]}, we have y − XM (y) = ξ and, indeed, X(y) = {y −
ξ},∀y ∈ [y∗, x]. The antecedent of Proposition 4 requires that f(x, a) − x < ξ, ∀x ∈ [0, x] so that
f(XM (y), a) < XM (y)+ξ = y−ξ+ξ = y,∀y ∈ [y∗, x]. Note that f(XM (y), a) = f(y−ξ, a)
is continuous on [y∗, x]. Since f(XM (y∗), a) < y∗, there exists ε > 0 such that f(XM (y), a) < y∗
for y ∈ (y∗, y∗ + ε) and this contradicts the hypothesis that ∀y > y∗, {yt(y, ω)} lies above y∗ with
probability one.
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We will show that this implies the existence of a safe standard of conservation, a
contradiction.

Let G(y, r) = f(XM (y), r). Since G is non-decreasing in y, it is easy to check
that there are two possibilities: (a) there exists y∗ ≥ h such that G(y∗, a) ≥ y∗ and
that for all y > y∗, G(y, a) ≥ y∗; (b) G(y, a) < y for all y ≥ h, but there exists
y∗ ≥ h such that limy↓y∗ G(y, a) = y∗, and for all y > y∗, G(y, a) ≥ y∗.

In case (a), consider any y ≥ y∗. We claim that for all t ≥ 0, yt(y, ω) ≥ y∗

for almost every ω ∈ Ω. Clearly, this is true for t = 0. We suppose this is true for
t = 0, . . . , T. Then, we have yT+1(y, ω) = G(yT (y, ω), ωT+1) ≥ G(y∗, a) ≥ y∗

a.e. ω ∈ Ω. Thus, by induction, y∗ is a safe standard of conservation.
In case (b), consider any y > y∗. We claim that for all t ≥ 0, yt(y, ω) > y∗

for almost every ω ∈ Ω. Clearly, this is true for t = 0. We suppose this is true
for t = 0, . . . , T. Then, yT+1(y, ω) = G(yT (y, ω), ωT+1) > G(yT (y, ω), a)
for almost every ω ∈ Ω. Since yT (y, ω) > y∗ by the induction hypothesis,
G(yT , a) ≥ limy↓y∗ G(y, a) = y∗ (since G is non-decreasing in y ). Thus, we
have yT+1(y, ω) > y∗ for almost every ω ∈ Ω. Once again, by induction, we have
that y∗ is a safe standard of conservation.

Thus, we have demonstrated that (5.13) holds for all h > 0. We now claim that
if either condition (i) or condition (ii) in the statement of the proposition holds, then
there exists ε > 0 such that

f(XM (y), b) < y, ∀y ∈ (0, ε). (5.14)

To prove this claim, note that if (i) holds, (5.14) follows immediately from the fact
that

f(XM (y), b) ≤ f(y, b) < y, ∀y ∈ (0, α).

Suppose (ii) holds. There are two possibilities: (a) XM (y) = 0 for some y > 0,
(b) XM (y) > 0,∀y > 0.

In case (a), since XM (.) is non-decreasing, (5.14) holds for ε = y.
Next, consider case (b). Since, f(y −β(y), a) = y and (5.13) holds, XM (y) <

y − β(y),∀y ∈ (0, x̃). Let c(y) = y − XM (y). Then, c(y) > β(y),∀y ∈ (0, x̃).
Suppose, contrary to (5.14) that there exists y ∈ (0, α) for which

f(XM (y), b) ≥ y.

Note that since f(α, b) < x̃, we have y > c(y) > 0 and f(XM (y), r) >
c(f(XM (y), r)) > 0,∀y ∈ (0, α), r ∈ [a, b].

Then, using the Ramsey-Euler equation (3.4b):

u′(f(XM (y), b) − XM (y)) ≤ u′(y − XM (y))
= u′(c(y))
= δE[u′(c(f(XM (y), r)))f ′(XM (y), r)]
≤ δE[u′(β(f(XM (y), r)))f ′(XM (y), r)],

and this leads to an immediate contradiction to condition (ii). Thus, we have shown
that (5.14) holds for ε = α.
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Let yt(y) be the realized path generated by the policy XM from initial stock y
on the set {ω : ωt = b, ∀t ≥ 1}. For any y ∈ (0, ε), (5.14) implies that the sequence
{yt(y)} ↓ 0. Let {yt(y, ω)} be the stochastic process of stocks generated by the
policy function XM . Since, for all t ≥ 1

yt(y, ω) ≤ yt(y) a.s.,

it follows that as t → ∞, yt(y, ω) → 0 with probability one for all y ∈ (0, ε). It
remains to show that as t → ∞, for any y ≥ ε, yt(y, ω) → 0 with probability one.

Choose any initial stock y ≥ ε and let K = max{y, x}. It is easy to check that
{yt(y)} is bounded above by K. Therefore, the stochastic process {yt(y, ω)} is uni-
formly bounded above by the constant K with probability one. Using (5.13) and as-
sumption (T.3), there exists λ > 0, such that f(XM (y), a+λ) < y,∀y ∈ [ε, K].24

Let {zt} be the deterministic sequence defined by z0 = K, zt = f(XM (zt−1), a+
λ). There exists positive N < ∞, such that zN < ε. Let

A = {ω : ∃T ≥ 1, ωt ∈ [a, a + λ], T ≤ t ≤ T + N}.

Observe that on the set A, we have yT+N (K, ω) < ε and since yt(y, ω) → 0
with probability one for all y ∈ (0, ε), it follows that yt(y, ω) → 0 a.s. on the
set A. Finally, observe that since the random shocks {rt} are i.i.d. and µ{rt ∈
[a, a + λ]} > 0, we have P (A) = 1.

References

1. Alvarez, L.H.R.: Optimal harvesting under stochastic fluctuations and critical depensation. Math-
ematical Biosciences152, 63–85 (1998)

2. Alvarez, L.H.R, Shepp, L.: Optimal harvesting of stochastically fluctuating populations. Journal
of Mathematical Biology 37, 155–77 (1998)

3. Brock,W.A., Mirman, L.J.: Optimal economic growth and uncertainty: the discounted case. Journal
of Economic Theory 4, 479–513 (1972)

4. Clark, C.W.: Profit maximization and the extinction of animal species. Journal of Political Economy
81, 950–961 (1973)

5. Clark, C.W.: Mathematical bioeconomics: the optimal management of renewable resources, 2nd
edn. New York: Wiley 1990

6. Cropper, M.:A note on the extinction of renewable resources. Journal of Environmental Economics
and Management 15, 64–70 (1988)

7. Dechert, W.D., Nishimura, K.: A complete characterization of optimal growth paths in an ag-
gregated model with nonconcave production function. Journal of Economic Theory 31, 332–354
(1983)

8. Kamihigashi, T.: Almost sure convergence to zero in stochastic growth models. Discussion Paper
No. 140, RIEB, Kobe University (2003)

9. Lande, R., Engen, S., Saether, B.-E.: Optimal harvesting, economic discounting and extinction
risk in fluctuating populations. Nature 372, 88–90 (1994)

10. Lewis, T.R.: Optimal resource management under conditions of uncertainty. Washington: Univer-
sity of Washington Press 1981

11. Lewis, T.R., Schmalensee, R.: Nonconvexity and optimal harvesting strategies for renewable re-
sources. Canadian Journal of Economics 12, 677–691 (1979)

24 (T.3) implies the uniform continuity of f(x, r) on [0, K] × [a, b].



Optimal exploitation of renewable resources under uncertainty and the extinction of species 23

12. Majumdar, M., Mitra, T.: Intertemporal allocation with a nonconvex technology. Journal of Eco-
nomic Theory 27, 101–36 (1982)

13. Majumdar, M., Mitra, T.: Dynamic optimization with a non-convex technology: the case of a linear
objective function. Review of Economic Studies 50, 143–151 (1983)

14. Majumdar, M., Mitra, T., Nyarko,Y.: Dynamic optimization under uncertainty: nonconvex feasible
set. In: Feiwel, G. (ed.) Joan Robinson and modern economic theory. New York: Macmillan 1989

15. Mirman, L.J., Spulber, D.: Uncertainty and markets for renewable resources. Journal of Economic
Dynamics and Control 8, 239–264 (1984)

16. Mirman, L.J., Zilcha, I.: On optimal growth under uncertainty. Journal of Economic Theory 11,
329–339 (1975)

17. Mirman, L.J., Zilcha, I.: Unbounded shadow prices for optimal stochastic growth models. Inter-
national Economic Review 17, 121–132 (1976)

18. Nishimura, K., Rudnicki, R., Stachurski, J.: Stochastic growth with nonconvexities: the optimal
case. Mimeo, Institute of Economic Research, Kyoto University (2003)

19. Olson, L.J., Roy, S.: Dynamic efficiency of conservation of renewable resources under uncertainty.
Journal of Economic Theory 95, 186–214 (2000)

20. Reed, W.J.: A stochastic model for the economic management of a renewable resource. Mathe-
matical Biosciences 22, 313–337 (1974)

21. Schäl, M.: Conditions for optimality in dynamic programming and for the limit of n-stage optimal
policies to be optimal. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 32, 179–
196 (1975)


